
MATH 2230 Complex Variables with Applications
Tutorial 9 and 10

The shortest path between two truths in the real domain passes through the complex domain.

– Jacques Hadamard

Please don’t give up and give your best! ⅁!⅁
All the contours in this note are positively oriented. Please let me know if you find any mistake.

1 Complex Differentiable Functions as Analytic Func-

tions

For both real and complex functions, one can define Analytic Functions.

Definition. Let Ω be a open subset of ℝ or ℂ. A function f : Ω→ ℝ or f : Ω→ ℂ is said to
be analytic at z ∈ Ω if there exists an open set D ⊆ Ω and (cn) ⊂ ℝ or ℂ such that

f(z) =
∞∑
n=0

ck(z − z0)n on D.

f is said to be analytic on Ω if f is analytic everywhere.

From its definition, it is clear that an analytic function is necessarily infinitely differentiable;
however, we have

Example 1.1. Consider the function f : ℝ→ ℝ

f(x) =

{
e−

1
x2 if x ∕= 0

0 if x = 0
.

Clearly, f is infinitely differentiable for x ∕= 0. Moreover, one can show that f (n)(0) = 0 for all
n ∈ ℕ. However, f is not analytic at 0; otherwise, f has to be entirely zero in a neighborhood
of 0 because of the power series expansion at 0.

However, as we have learnt, given a complex differentiable f on D(z0, �), we have

Theorem. For 0 < r < �,

f(z) =
n∑
k=0

f (k)(z0)

k!
(z − z0)k +

(z − z0)n+1

2�i

∫
∣z−z0∣=r

f(�)

(� − z)(� − z0)n+1
d�, z ∈ D(z0, �).

Moreover,

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n, z ∈ D(z0, �)

and the convergence is uniform on D(z0, r) for any 0 < r < �.

As an immediate corollary, we have

Corollary. Let Ω ⊆ ℂ be open and f is complex differentiable on Ω, then f is analytic on Ω.
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2 Zeros of Analytic Functions

Given an analytic function f , because of the power series expansion, if f(z0) = 0 and f does
not vanish on a neighborhood at a point z0, then z0 is an isolated zero of f , meaning these
exist a neighborhood N of z0 such that f(z) ∕= 0 on N ∖ {z0}. Indeed, because of the power
series expansion, we have

Theorem. Suppose Ω ⊆ ℂ is open, f : Ω → ℂ is analytic, z0 ∈ Ω and f (k)(z0) = 0 for
k = 0, 1, ⋅ ⋅ ⋅ , n − 1, then there exist an analytic function ' : Ω → ℂ such that '(z) ∕= 0 on a
neighborhood N of z0 and

f(z) = (z − z0)n'(z).

An immediate corollary is the zeroes of f are isolated

Corollary. Suppose f : Ω → ℂ is analytic and there exists a sequence (zn) ⊂ Ω such that
zn → z0 as n → ∞ and f(zn) = 0 for all n ∈ ℕ ∪ {0}, then there exists a neighborhood N of
z0 such that f(z) = 0 on N .

Some applications of the above facts are

Example 2.1. Let f, g : ℂ → ℂ be entire and z0 ∈ ℂ. Suppose f (k)(z0) = g(k)(z0) = 0 for
k = 0, 1, ⋅ ⋅ ⋅ , n− 1, show that

lim
z→z0

f(z)

g(z)
=
f (n)(z0)

g(n)(z0)
.

Proof. The above corollary gives '1, '2 such that '1(z), '2(z) ∕= 0 on N1,N2 respectively and

f(z) = (z − z0)n'1(z) and g(z) = (z − z0)n'2(z).

For z /∈ N2 ∖ {z0},
f(z)

g(z)
=

(z − z0)n'1(z)

(z − z0)n'2(z)
=
'1(z)

'2(z)
.

Note that '1(z0) = f (n)(z0)
n!

and '2(z0) = g(n)(z0)
n!

and '1, '2 are continuous, so

lim
z→z0

f(z)

g(z)
= lim

z→z0

'1(z)

'2(z)
=
'1(z0)

'2(z0)
=
f (n)(z0)

g(n)(z0)
.

Example 2.2. Prove that there is no analytic function f in ∣z∣ < 1 such that

f(
1

n
) =

(−1)n

n2
, n ∈ ℕ.

Proof. On the contrary, suppose such function f exists. The continuity of f at 0 gives

f(0) = lim
n→∞

f(
1

n
) = 0.

Moreover, the differentiability of f at 0 gives

f ′(0) = lim
n→∞

f( 1
n
)− f(0)
1
n
− 0

= lim
n→∞

(−1)n

n
= 0.

By the above corollary, there exists an analytic ' such that f(z) = z2'(z). Substituting z = 1
n

gives

'(
1

n
) = (−1)n

which gives

0 = lim
n→∞

'(
1

n
) = lim

n→∞
(−1)n

since ' is continuous at 0, a contradiction.
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Example 2.3. Prove that there is no analytic function f in ∣z∣ < 1 such that

f(
1

n
) =

1

2n
, n ∈ ℕ.

Proof. On the contrary, suppose such function f exists. The continuity of f at 0 gives

f(0) = lim
n→∞

f(
1

n
) = 0.

By the above corollary, there exists an analytic g1 such that f(z) = zg1(z). Substituting z = 1
n

gives

g1(
1

n
) =

n

2n
.

Since

lim
n→∞

g1(
1

n
) = 0,

we can obtain another analytic g2 such that g1(z) = zg2(z) and

g2(
1

n
) =

n2

2n
.

Inductively, for all m ∈ ℕ, there exists an analytic gm such that f(z) = zmg(z) and

gm(
1

n
) =

m2

2n
,

showing that
f (m)(0) = 0

for any m ∈ ℕ. However, since f is analytic at 0, f(z) = 0 on a neighborhood of 0, contradicting
f( 1

n
) = 1

2n
∕= 0 for any n ∈ ℕ.

3 Maximum Modulus Principle

Recall an important theorem concerning complex differentiable functions

Theorem. Suppose Ω ⊆ ℂ is a domain. Let f : Ω→ ℂ is complex differentiable. Then there
does not exist z0 ∈ Ω such that

∣f(z)∣ ≤ ∣f(z0)∣ on Ω.

An application is the following

Example 3.1. Suppose f is a nonconstant analytic function on ∣z∣ ≤ 1 such that ∣f(z)∣ is a
constant on ∣z∣ = 1. Show that f has a zero in ∣z∣ < 1.

Proof. On the contrary, suppose f has no zero in ∣z∣ < 1. Let c = ∣f(z0)∣ for some ∣z0∣ = 1. If
c = 0, the maximum modulus principle gives

∣f(z)∣ ≤ c = 0

and hence f = 0 on ∣z∣ ≤ 1, contracting f is nonconstant on ∣z∣ ≤ 1. If c > 0, then g = 1
f

is well

defined and analytic on ∣z∣ ≤ 1 since g has no zero on ∣z∣ ≤ 1. Applying maximum modulus
principle to f and g, we get

∣f(z)∣ ≤ c and
1

∣f(z)∣
≤ 1

c

on ∣z∣ ≤ 1. Hence, ∣f(z)∣ = c on ∣z∣ ≤ 1. Using maximum modulus principle again, f is a
constant on ∣z∣ < 1, which again contradicts f is nonconstant on ∣z∣ ≤ 1.
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4 Argument Principle and Rouche’s Theorem

Note that
1

2�i

∫
∣z∣=1

dz

z
= 1 and

∫
∣z∣=1

f(z)dz = 0

for any analytic functions f on ∣z∣ ≤ 1. It motivates us to consider

Theorem. Let Ω ⊆ ℂ be open and f : Ω→ ℂ be analytic on Ω with zeroes z1, z2, ⋅ ⋅ ⋅ , zn in Ω
with multiplicities m1,m2, ⋅ ⋅ ⋅ ,mn. Let  ⊂ Ω be a closed contour and f(z) ∕= 0 ∀z ∈ , then

1

2�i

∫


f ′(z)

f(z)
dz =

n∑
k=1

mkn(zk, ),

where n(zk, ), k = 1, 2, ⋅ ⋅ ⋅ , n are the winding numbers of zk, k = 1, 2, ⋅ ⋅ ⋅ , n with respect to .

The immediate corollaries are

Corollary. Let Ω ⊆ ℂ be open and f : Ω → ℂ be analytic on Ω with zeroes z1, z2, ⋅ ⋅ ⋅ , zn in
Ω with multiplicities m1,m2, ⋅ ⋅ ⋅ ,mn. Suppose  ⊂ Ω is a simple closed contour, z1, z2, ⋅ ⋅ ⋅ , zn
are all inside the bounded region R enclosed by  and f(z) ∕= 0 ∀z ∈ , then

1

2�i

∫


f ′(z)

f(z)
dz =

n∑
k=1

mk = Total number of zeroes of f in R.

Corollary. Let Ω ⊆ ℂ be open, f : Ω → ℂ be analytic on Ω and z ∈ ℂ. Suppose  ⊂ Ω is a
simple closed contour, R is the bounded region enclosed by  and f(z) ∕= a ∀z ∈ , then

1

2�i

∫


f ′(z)

f(z)− a
dz = Total number of solutions of f = a in R.

A slight generalization is

Theorem. Let Ω ⊆ ℂ be open, F,G : Ω → ℂ be analytic on Ω. Suppose  ⊂ Ω is a simple
closed contour R is the bounded region enclosed by , F (z), G(z) ∕= 0 ∀z ∈  and f = F

G
, then

1

2�i

∫


f ′(z)

f(z)
dz = Total number of zeroes of F in R− Total number of zeroes of G in R.

Proof. Let F,G, ,R as in the theorem. Let z1, z2, ⋅ ⋅ ⋅ , zn and z
′
1, z

′
2, ⋅ ⋅ ⋅ , z

′
m be the zeroes of F

and G in R respectively. Factorizing F,G by the theorem in the previous section,

F (z) = '1(z)
n∏
k=1

(z − zk)mk and G(z) = '2(z)
m∏
k=1

(z − z′k)m
′
k ,

where mk,m
′

k are the multiplicities of zk, z
′

k respectively and '1, '2 are analytic on Ω with no
zero in R. Hence,

f ′(z)

f(z)
=

n∑
k=1

mk

z − zk
−

m∑
k=1

m
′

k

z − z′k
+

('1

'2
)′(z)

'1

'2
(z)

.

Integrating both sides over , the result follows.

Using the above theorem, Argument Principle and Rouche’s Theorem follows.

Corollary (Argument Principle). Under the same assumptions with Γ = f(), then

n(0,Γ) = Total number of zeroes of F in R− Total number of zeroes of G in R.
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Corollary (Rouche’s Theorem). Under the same assumptions, if ∣F −G∣ < ∣F ∣ on , then

Total number of zeroes of F in R = Total number of zeroes of G in R.

Remark. Geometrically, Argument Principle tell us that the difference of the number of zeroes
of F and G in R is the number of times that Γ circles around the origin, that is

Difference in total number of zeroes of F and G in R = ∣The total change in argument

2�
∣.

Remark. Geometrically, Rouche’s Theorem is case where Γ does not circle around the origin at
all, so

Difference in total number of zeroes of F and G in R = 0.

In some case, Rouche’s Theorem can be useful in determining the solutions of an equation
as the following examples illustrate.

Example 4.1. Determine the number of zeroes, including multiplicity, of the following poly-
nomials in ∣z∣ < 1.

1. z6 − 5z4 + z3 − 2z

2. 2z4 − 2z3 + 2z2 − 2z + 9

Solution:

1. Let g(z) = z6 − 5z4 + z3 − 2z and f(z) = −5z4, then

∣f − g∣ ≤ 1 + 1 + 2 = 4 < 5 = ∣f ∣

on ∣z∣ = 1. Hence, Rouche’s Theorem shows that g has 4 zeroes in ∣z∣ < 1.

2. Let g(z) = 2z4 − 2z3 + 2z2 − 2z + 9 and f(z) = 9, then

∣f − g∣ ≤ 2 + 2 + 2 + 2 = 8 < 9 = ∣f ∣

on ∣z∣ = 1. Hence, Rouche’s Theorem shows that g has no zero in ∣z∣ < 1.

Example 4.2. Determine the number of zeroes, including multiplicity, of the following poly-
nomials in ∣z∣ < 2.

1. z4 + 3z3 + 6

2. z4 − 2z3 + 9z2 + z − 1

Solution:

1. Let g(z) = z4 + 3z3 + 6 and f(z) = 3z3, then

∣f − g∣ ≤ 16 + 6 = 22 < 24 = ∣f ∣

on ∣z∣ = 2. Hence, Rouche’s Theorem shows that g has 3 zeroes in ∣z∣ < 2.

2. g(z) = z4 − 2z3 + 9z2 + z − 1 and f(z) = 9z2, then

∣f − g∣ ≤ 16 + 16 + 2 + 1 = 35 < 36 = ∣f ∣

in ∣z∣ = 2. Hence, Rouche’s Theorem shows that g has 2 zeroes in ∣z∣ < 2.

5



3. Let g(z) = z5 + 3z3 + z2 + 1 and f(z) = z5, then

∣f − g∣ ≤ 24 + 4 + 1 = 29 < 32 = ∣f ∣

on ∣z∣ = 2. Hence, Rouche’s Theorem shows that g has 5 zeroes in ∣z∣ < 2.

Example 4.3. Determine the number of zeroes, including multiplicity, of the polynomials
2z5 − 6z2 + z + 1 in 1 ≤ ∣z∣ < 2.
Solution: Let g(z) = 2z5 − 6z2 + z + 1, f1(z) = −6z2 and f2(z) = 2z5, then

∣f1 − g∣ ≤ 2 + 1 + 1 = 4 < 6 = ∣f1∣

on ∣z∣ = 1 and
∣f2 − g∣ ≤ 24 + 2 + 1 = 27 < 64 = ∣f2∣

on ∣z∣ = 2. Hence, Rouche’s Theorem shows that g has 2 zeroes in ∣z∣ < 1 and g has 5 zeroes
in ∣z∣ < 2 and so g has 3 zeroes in 1 ≤ ∣z∣ < 2.

Example 4.4. Suppose c ∈ ℂ is such that ∣c∣ > e. Show that the number of solution, including
multiplicity, of the equation ez = czn in ∣z∣ < 1 is n.
Solution: Consider g(z) = ez − czn and f(z) = −czn, then

∣f − g∣ = ∣ez∣ = ex ≤ e < ∣c∣ = ∣f ∣

on ∣z∣ = 1. Hence, Rouche’s Theorem shows that g has n zeroes in ∣z∣ < 1.

Please refer to the exercises and lecture notes for more examples of this type.

Remark. From the examples, if  = {z ∈ ℂ : ∣z∣ = R} for some R > 0 and g(z) =
∑deg(g)

k=1 akz
k is

a polynomial, we see that a technique in applying Rouche’s Theorem to get the number of zeroes
of g is to set f as a polynomial with simple factorization while ∣f ∣ is large on . In particular,
it would be easier to begin the test by considering f(z) = amz

m, where 1 ≤ m ≤ deg(g) is such
that ∣am∣Rm = max1≤k≤deg(g) ∣ak∣Rk. This kind of method can also somewhat be extend to the
case where g is not a polynomial by considering f(z) = czk for some k ∈ ℕ and c ∈ ℂ.

5 Laurent Series and Residues

In the lectures, we learned that

Theorem. Let f : D(z0, R2)∖D(z0, R1)→ ℂ, R1 < R2 be analytic and  ⊂ D(z0, R2)∖D(z0, R1)
be a simple closed contour, then

f(z) =
∞∑

n=−∞

cn(z − z0)n, R1 < ∣z − z0∣ < R2,

where

cn =
1

2�i

∫


f(z)

(z − z0)n+1
dz

and the convergence is uniform on r1 ≤ ∣z − z0∣ ≤ r2 for any R1 < r1 < r2 < R2.

Moreover, the Laurent series (and hence the Taylor’s series) of a given function is unique

Theorem. Under the same assumption, if

f(z) =
∞∑

n=−∞

c
′

n(z − z0)n, R1 < ∣z − z0∣ < R2,

then cn = c
′
n ∀n ∈ ℤ.
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The Laurent series of a function f being unique is useful in computing the Laurent series
and hence the residue of f .

Example 5.1. Find the residues of the following functions at 0.

1. 1
z+z2

2. z cos 1
z

3. z−sin z
z

4. cot z
z4

5. sinh z
z4(1−z2)

Solution:

1. For 0 < ∣z∣ < 1,

1

z + z2
=

1

z

1

1 + z
=

1

z

∞∑
n=0

(−z)n =
∞∑

n=−1

(−1)n+1zn.

By the uniqueness of Laurent series,

Resz=0
1

z + z2
= 1.

2. For 0 < ∣z∣ <∞,

z cos(
1

z
) = z

∞∑
n=0

(−1)n

(2n)!

1

z2n
=
∞∑
n=0

(−1)n

(2n)!

1

z2n−1
.

By the uniqueness of Laurent series,

Resz=0 z cos(
1

z
) = −1

2
.

3. For 0 < ∣z∣ <∞,

z − sin z

z
=
z −

∑∞
n=0

(−1)n
(2n+1)!

z2n+1

z
=
∞∑
n=1

(−1)n+1

(2n+ 1)!
z2n.

By the uniqueness of Laurent series,

Resz=0
z − sin z

z
= 0.

4. For 0 < ∣z∣ <∞,

cot z

z4
=

1

z4

∑∞
n=0

(−1)n
(2n)!

z2n∑∞
n=0

(−1)n
(2n+1)!

z2n+1
=

1

z5
− 1

3

1

z3
− 1

45

1

z
+ ⋅ ⋅ ⋅ .

By the uniqueness of Laurent series,

Resz=0
cot z

z4
=
−1

45
.

5. For ∣z∣ < 1,

sinh z

1− z2
=
∞∑
n=0

z2n+1

(2n+ 1)!

∞∑
n=0

z2n = z + (1 +
1

3!
)z3 + ⋅ ⋅ ⋅ .

By the uniqueness of Laurent series,

Resz=0
sinh z

z4(1− z2)
= 1 +

1

3!
=

7

6
.
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6 Applications of Theory of Residues

Using Cauchy Residue Theorem, a number of types of improper integrals can be found.

6.1 Improper Integrals

Let f : ℝ→ ℝ be an Riemann integrable function on [−R,R] for any R > 0. By definition, an
improper integral of the form ∫ ∞

0

f(x)dx

is defined by ∫ ∞
0

f(x)dx = lim
R→∞

∫ R

0

f(x)dx

provided the limit exists. Another kind of integral of interest to us is those of the form∫ ∞
−∞

f(x)dx,

which is defined by ∫ ∞
−∞

f(x)dx = lim
R→∞

∫ 0

−R
f(x)dx+ lim

R→∞

∫ R

0

f(x)dx,

provided both limits exists. Note that we do not define the later integral as∫ ∞
−∞

f(x)dx = lim
R→∞

∫ R

−R
f(x)dx

to distinguish those functions for which∫ 0

−R
f(x)dx and

∫ R

0

f(x)dx

both diverges while

lim
R→∞

∫ R

−R
f(x)dx

exists as a real number. However, to include

lim
R→∞

∫ R

−R
f(x)dx

as part of our study, we call it the Cauchy Principle Value of f and denote it by

P.V.

∫ ∞
−∞

f(x)dx = lim
R→∞

∫ R

−R
f(x)dx.

To summarize our discussion, we define

Definition. The improper integrals∫ ∞
−∞

f(x)dx and P.V.

∫ ∞
−∞

f(x)dx

are defined by ∫ ∞
−∞

f(x)dx = lim
R→∞

∫ 0

−R
f(x)dx+ lim

R→∞

∫ R

0

f(x)dx

P.V.

∫ ∞
−∞

f(x)dx = lim
R→∞

∫ R

−R
f(x)dx.
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Example 6.1. For both even and odd functions, that is, functions with the property f(−x) =
±f(x) respectively, the existences of the integrals

lim
R→∞

∫ 0

−R
f(x)dx, lim

R→∞

∫ R

0

f(x)dx

coincide because ∫ 0

−R
f(x)dx = ±

∫ R

0

f(x)dx

for every R > 0 by a change of variable respectively. Moreover, for even functions, the existence
and values of the 2 kinds of improper integral coincide because

P.V.

∫ ∞
−∞

f(x)dx = lim
R→∞

∫ R

−R
f(x)dx

= 2 lim
R→∞

∫ R

0

f(x)dx

= lim
R→∞

∫ 0

−R
f(x)dx+ lim

R→∞

∫ R

0

f(x)dx

=

∫ ∞
−∞

f(x)dx.

For odd functions, however, the Cauchy Principle Values always exists and equal to 0 because

P.V.

∫ ∞
−∞

f(x)dx = lim
R→∞

∫ R

−R
f(x)dx = lim

R→∞
(

∫ 0

−R
f(x)dx+

∫ R

0

f(x)dx) = 0

while both one sided improper integrals may diverge.

Example 6.2. Note that f(x) = x, sinx are both odd functions, so

P.V.

∫ ∞
−∞

f(x)dx = 0.

However, both integrals

lim
R→∞

∫ 0

−R
f(x)dx, lim

R→∞

∫ R

0

f(x)dx

diverges. For f(x) = x, the one-sided improper integrals diverges to ±∞ while for f(x) = sinx,
both one-sided improper integrals simply do not exist at all.

6.2 Improper Integral Type I

In this section, we investigate integrals of the form

P.V.

∫ ∞
−∞

P (x)

Q(x)
dx = P.V.

∫ ∞
−∞

anx
n + an−1x

n−1 + ⋅ ⋅ ⋅+ a0
bmxm + bm−1xm−1 + ⋅ ⋅ ⋅+ b0

dx,

where no zeroes of Q are real. To ensure the convergence of the integral, we assume deg(Q) ≥
deg(P ) + 2. Below is the general method

Theorem. Let P,Q be polynomials with deg(Q) ≥ deg(P ) + 2 and Q(x) ∕= 0 ∀x ∈ ℝ. Let
{z1, z2, ⋅ ⋅ ⋅ , zN} be all the zeroes of Q with Im zk > 0 ∀1 ≤ k ≤ N , then

P.V.

∫ ∞
−∞

P (x)

Q(x)
dx = 2�i

N∑
k=1

Res(
P

Q
; zk).
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Proof. Let CR be the upper-semi circle with radius R and R be CR together with the line
segment from −R to R. For R > max1≤k≤N ∣zk∣, by Residue Theory,∫

R

P (z)

Q(z)
dz = 2�i

N∑
k=1

Res(
P

Q
; zk).

For sufficiently large R,

∣
∫
CR

P (z)

Q(z)
dz∣ ≤ �R

maxz∈CR ∣P (z)∣
minz∈CR ∣Q(z)∣

−→ 0 as R −→∞.

since deg(Q) ≥ deg(P ) + 2. Therefore,

P.V.

∫ ∞
−∞

P (x)

Q(x)
dx = 2�i

N∑
k=1

Res(
P

Q
; zk)− lim

R→∞

∫
CR

P (z)

Q(z)
dz = 2�i

N∑
k=1

Res(
P

Q
; zk).

Example 6.3. Find ∫ ∞
0

x2dx

(x2 + 1)(x2 + 4)
.

Solution: Let CR be the upper-semi circle with radius R and R be CR together with the line
segment from −R to R. The zeroes of (z2 + 1)(z2 + 4) is ±i,±2i. For R > 2, by Residue
Theory, ∫

R

z2dz

(z2 + 1)(z2 + 4)
= 2�i(

i2

(i+ i)(i2 + 4)
+

(2i)2

((2i)2 + 1)(2i+ 2i)
) =

�

3
.

Moreover, for R > 2,

∣
∫
CR

z2dz

(z2 + 1)(z2 + 4)
∣ ≤ �R

R2

(R2 − 1)(R2 − 4)
−→ 0 as R −→∞.

Therefore,∫ ∞
0

x2dx

(x2 + 1)(x2 + 4)
=

1

2

∫ ∞
−∞

x2dx

(x2 + 1)(x2 + 4)
=

1

2
(
�

3
− lim

R→∞

∫
CR

z2dz

(z2 + 1)(z2 + 4)
) =

�

6
.

6.3 Improper Integral Type II

In this section, we investigate integrals of the form

P.V.

∫ ∞
−∞

P (x)

Q(x)
sin�xdx,P.V.

∫ ∞
−∞

P (x)

Q(x)
cos�xdx,

where P,Q are polynomials, 0 ∕= � ∈ ℝ and no zeroes of Q are real. However, unlike the last
section where we assume deg(Q) ≥ deg(P ) + 2, we can release the assumption to deg(Q) ≥
deg(P ) + 1 because of the oscillations of sin�x, cos�x. We need a inequality called Jordan’s
inequality

Lemma 6.4 (Jordan’s inequality). Let R > 0, then∫ �

0

e−R sin �d� <
�

R
.

Remark. You may use this inequality without proof in the examination if needed.
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Below is the general method

Theorem. Let P,Q be polynomials with deg(Q) ≥ deg(P ) + 1 and Q(x) ∕= 0 ∀x ∈ ℝ. Let
{z1, z2, ⋅ ⋅ ⋅ , zN} be all the zeroes of Q with Im zk > 0 ∀1 ≤ k ≤ N , then

P.V.

∫ ∞
−∞

P (x)

Q(x)
cos�xdx+ iP.V.

∫ ∞
−∞

P (x)

Q(x)
sin�xdx = 2�i

N∑
k=1

Res(
P

Q
e(i�⋅); zk).

Proof. Let CR be the upper-semi circle with radius R and R be CR together with the line
segment from −R to R. For R > max1≤k≤N ∣zk∣, by Residue Theory,∫

R

P (z)

Q(z)
ei�zdz = 2�i

N∑
k=1

Res(
P

Q
e(i�⋅); zk).

For sufficiently large R, by Jordan’s inequality,

∣
∫
CR

P (z)

Q(z)
ei�zdz∣ = ∣

∫ �

0

P (Rei�)

Q(Rei�)
ei�Re

i�

iRei�d�∣

≤ R
maxz∈CR ∣P (z)∣
minz∈CR ∣Q(z)∣

∫ �

0

∣ei�Rei� ∣d�

= R
maxz∈CR ∣P (z)∣
minz∈CR ∣Q(z)∣

∫ �

0

e−�R sin �d�

< R
maxz∈CR ∣P (z)∣
minz∈CR ∣Q(z)∣

�

aR

=
�

a

maxz∈CR ∣P (z)∣
minz∈CR ∣Q(z)∣

−→ 0 as R −→∞.

since deg(Q) ≥ deg(P ) + 1. Therefore,

P.V.

∫ ∞
−∞

P (x)

Q(x)
ei�xdx = 2�i

N∑
k=1

Res(
P

Q
e(i�⋅); zk)− lim

R→∞

∫
CR

P (z)

Q(z)
ei�zdz = 2�i

N∑
k=1

Res(
P

Q
e(i�⋅); zk).

Example 6.5. Find ∫ ∞
−∞

cosxdx

(x2 + a2)(x2 + b2)
,

where a > b > 0.
Solution: Let CR be the upper-semi circle with radius R and R be CR together with the line
segment from −R to R. The zeroes of (z2 + a2)(z2 + b2) is ±ai,±bi. For R > max{a, b}, by
Residue Theory,∫

R

eizdz

(z2 + a2)(z2 + b2)
= 2�i(

e−a

2ia(b2 − a2)
+

e−b

2ib(a2 − b2)
) =

�

a2 − b2
(
e−b

b
− e−a

a
).

Moreover, for R > max{a, b},

∣
∫
CR

eizdz

(z2 + a2)(z2 + b2)
∣ ≤

∫
CR

∣eiz∣
∣(z2 + a2)(z2 + b2)∣

∣dz∣

=

∫
CR

e−y

∣(z2 + a2)(z2 + b2)∣
∣dz∣

≤
∫
CR

1

(R2 − a2)(R2 − b2)
∣dz∣ (y ≥ 0⇒ e−y ≤ 1)

=
�R

(R2 − a2)(R2 − b2)
−→ 0 as R −→∞.
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Therefore,∫ ∞
−∞

cosxdx

(x2 + a2)(x2 + b2)
= Re

�

a2 − b2
(
e−b

b
− e−a

a
)− lim

R→∞
Re

∫
CR

eizdz

(z2 + a2)(z2 + b2)

=
�

a2 − b2
(
e−b

b
− e−a

a
).

Remark. Sometimes, it is not necessary to use Jordan’s inequality to conclude the result because
the difference in degree is large enough as the above example shows. However, it is not always
the case as the following example shows.

Example 6.6. Find ∫ ∞
0

x sin 2x

x2 + 3
dx.

Solution: Let CR be the upper-semi circle with radius R and R be CR together with the line
segment from −R to R. The zeroes of z2 + 3 is ±

√
3i. For R >

√
3, by Residue Theory,∫

R

ze2izdz

z2 + 3
= 2�i

√
3ie−2

√
3

2
√

3i
= i�e−2

√
3.

Moreover, for R >
√

3, by Jordan’s inequality,

∣
∫
CR

ze2izdz

z2 + 3
∣ = ∣

∫ �

0

Rei�e2iRe
i�

(Rei�)2 + 3
Riei�d�∣

≤ R2

R2 − 3

∫ �

0

e−2R sin �d�

<
R2

R2 − 3

�

2R
−→ 0 as R −→∞.

Therefore,∫ ∞
0

x sin 2x

x2 + 3
dx =

1

2

∫ ∞
−∞

x sin 2x

x2 + 3
dx =

1

2
(Im i�e−2

√
3 − lim

R→∞
Im

∫
CR

ze2izdz

z2 + 3
) =

�

2
e−2
√
3.

6.4 Improper Integral Type III

In this section, we investigate integrals of the form∫ ∞
0

P (x)

Q(x)
lnxdx,

∫ ∞
0

P (x)

Q(x)
x�dx,

where P,Q are polynomials, −1 < � < 1 and no zeroes of Q are real. We assume deg(Q) ≥
deg(P ) + 2. Moreover, we assume P (−x) = P (x) and Q(−x) = Q(x) on ℝ. Below is the
general method

Theorem. Let P,Q be polynomials with deg(Q) ≥ deg(P ) + 2 and Q(x) ∕= 0 ∀x ∈ ℝ. Let
{z1, z2, ⋅ ⋅ ⋅ , zN} be all the zeroes of Q with Im zk > 0 ∀1 ≤ k ≤ N . In addition, assume
P (−x) = P (x) and Q(−x) = Q(x) on ℝ, then for −1 < � < 1, −�

2
< arg z < 3�

3
,∫ ∞

0

P (x)

Q(x)
x�dx =

�

cos ��
2

ie−i
��
2

N∑
k=1

Res(
P

Q
(⋅)�; zk)

and ∫ ∞
0

P (x)

Q(x)
lnxdx = Re�i

N∑
k=1

Res(
P

Q
log; zk).
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Proof. We only consider the case where x� is present and the other case can be treated similarly.
Let CR, C�, R > � > 0 be the upper-semi circle with radius R and � respectively. Let L1

�,R be
the line segment from −R to −� and L2

�,R be the line segment from � to R. Finally, let
�,R = CR + L1

�,R − C� + L2
�,R. By Residue Theory, for � < 1 < R and −�

2
< arg z < 3�

2
,∫

�,R

P (z)

Q(z)
z�dz = 2�i

N∑
k=1

Res(
P

Q
(⋅)�; zk).

For R > 1, since � < 1 and deg(Q) ≥ deg(P ) + 2,

∣
∫
CR

P (z)

Q(z)
z�dz∣ ≤ �R�+1maxz∈CR ∣P (z)∣

minz∈CR ∣Q(z)∣
−→ 0 as R −→∞.

For � < 1, since � > −1,

∣
∫
C�

P (z)

Q(z)
z�dz∣ ≤ ���+1maxz∈C� ∣P (z)∣

minz∈C� ∣Q(z)∣
−→ 0 as � −→ 0+.

Hence, ∫ ∞
0

P (x)

Q(x)
x�dx+

∫ 0

−∞

P (x)

Q(x)
∣x∣�e�i�dx = 2�i

N∑
k=1

Res(
P

Q
(⋅)�; zk)

(1 + e�i�)

∫ ∞
0

P (x)

Q(x)
x�dx = 2�i

N∑
k=1

Res(
P

Q
(⋅)�; zk)

∫ ∞
0

P (x)

Q(x)
x�dx =

�

cos ��
2

ie−i
��
2

N∑
k=1

Res(
P

Q
(⋅)�; zk).

Example 6.7. Find ∫ ∞
0

x�

(x2 + 1)2
dx,

where −1 < � < 3.
Solution: Let CR, C�, R > � > 0 be the upper-semi circle with radius R and � respectively. Let
L1
�,R be the line segment from −R to −� and L2

�,R be the line segment from � to R. Finally, let
�,R = CR+L1

�,R−C�+L2
�,R. The zeroes of (z2 +1)2 are ±i. By Residue Theory, for � < 1 < R

and −�
2
< arg z < 3�

2
, ∫

�,R

z�

(z2 + 1)2
dz = 2�i(−2

i�

(i+ i)3
+ �

i�−1

(i+ i)2
)

= 2�i(
ei
��
2

4i
− �e

i
(�−1)�

2

4
)

=
�

2
(1− �)ei

��
2 .

For R > 1, since � < 3,

∣
∫
CR

z�

(z2 + 1)2
dz∣ ≤ �R�+1

(R2 − 1)2
−→ 0 as R −→∞.

For � < 1, since � > −1,

∣
∫
C�

z�

(z2 + 1)2
dz∣ ≤ ���+1

(1− �2)2
−→ 0 as � −→ 0+.
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Hence, ∫ ∞
0

x�

(x2 + 1)2
dx+

∫ 0

−∞

∣x∣�ei��

(x2 + 1)2
=
�

2
(1− �)ei

��
2

(1 + ei��)

∫ ∞
0

x�

(x2 + 1)2
dx =

�

2
(1− �)ei

��
2∫ ∞

0

x�

(x2 + 1)2
dx =

�(1− �)

4 cos ��
2

.

6.5 Improper Integral Type IV

So far, we have only considered Q(x) ∕= 0 ∀x ∈ ℝ because we want to integrate over the upper
semi-circle together with 2 real line segments which eventually covers the whole real line. In
this section, we are going to slightly remove this limitation and investigate integrals of the form∫ ∞

0

P (x)

Q(x)
lnxdx,

∫ ∞
0

P (x)

Q(x)
x�dx,

where P,Q are polynomials, −1 < � < 1 and the zeroes of Q have negative real parts, that is,
Re z < 0. We assume deg(Q) ≥ deg(P ) + 2. We need a proposition

Proposition. Let g be an entire function with the real part of zeroes being negative and let
f(x) = x�, � ∈ ℝ or f(x) = lnx, where x > 0. Let 0 < � < R such that all the zeroes of g are
lying in � < ∣z∣ < R, then∫

∣z∣=R

f(z)

g(z)
dz +

∫
−(∣z∣=�)

f(z)

g(z)
dz +

∫ R

�

f(x)

g(x)
dx+

∫ �

R

ℎ(x)

g(x)
dx = 2�i

∑
z∈Z(g)

Res(
f

g
; z),

where Z(g) := {z ∈ ℂ : z is a zero of g}, f(z) is corresponding function with the branch
0 < arg z < 2� and ℎ(x) = x�e2�i� if f(x) = x� and ℎ(x) = lnx+ 2�i if f(x) = ln x.

Remark. One can improve this proposition to the following: Let g be an entire function with
all its zeroes lying in ∣ arg z∣ < " for some " > 0. Under the same further assumptions and
notations as above, then∫

∣z∣=R

f(z)

g(z)
dz +

∫
−(∣z∣=�)

f(z)

g(z)
dz +

∫ R

�

f(x)

g(x)
dx+

∫ �

R

ℎ(x)

g(x)
dx = 2�i

∑
z∈Z(g)

Res(
f

g
; z).

Proof. We consider the case where f(x) = x�; the case f(x) = lnx can be treated similarly.
Let � ∈ (�, 3�

2
). Firstly, let CR, C�, R > � > 0 be the arc with radius R and � and going from

0 to Rei� and �ei� respectively. Let L1
�,R be the line segment from Rei� to �ei� and L2

�,R be
the line segment from � to R. Finally, let �,R = CR + L1

�,R − C� + L2
�,R. Consider the branch

−�
2
< arg z < 3�

2
and denote f1(z) = x� with this branch. By Cauchy Residue Theorem, since

all zeroes of g are in � < ∣z∣ < R and f1 = f on Re z < 0,∫
�,R

f1(z)

g(z)
dz = 2�i

∑
z∈Z(g)

Res(
f1
g

; z) = 2�i
∑
z∈Z(g)

Res(
f

g
; z).

Secondly, let C
′
R, C

′
�, R > � > 0 be the arc with radius R and � and going from Rei� and �ei�

to 0 respectively. Let L1
�,R be the line segment from Rei� to �ei� and L2

�,R be the line segment

from � to R. Finally, let 
′
�,R = C

′
R − L1

�,R − C� − L2
�,R. Consider the branch �

2
< arg z < 5�

2

and denote f2(z) = x� with this branch. By Cauchy-Goursat Theorem,∫

′
�,R

f2(z)

g(z)
dz = 0.
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Note that f1 = f on [�,R], f2 = ℎ on [�,R], f1 = f2 on L1
�,R, f1 = f2 = f on ∣z∣ = �,R except

z = �,R; therefore,

2�i
∑
z∈Z(g)

Res(
f

g
; z)

=

∫
�,R

f1(z)

g(z)
dz +

∫

′
�,R

f2(z)

g(z)
dz

=

∫
CR+L

1
�,R−C�+L

2
�,R

f1(z)

g(z)
dz +

∫
C
′
R−L

1
�,R−C�−L

2
�,R

f2(z)

g(z)
dz

= (

∫
CR

f1
g
dz +

∫
C
′
R

f2
g
dz) + (

∫
−C�

f1
g
dz +

∫
−C′�

f2
g
dz)

+ (

∫
L1
�,R

f1
g
dz +

∫
−L1

�,R

f2
g
dz) + (

∫
L2
�,R

f1
g
dz +

∫
−L2

�,R

f2
g
dz)

= (

∫
CR

f

g
dz +

∫
C
′
R

f

g
dz) + (

∫
−C�

f

g
dz +

∫
−C′�

f

g
dz)

+ (

∫
L1
�,R

f1
g
dz +

∫
−L1

�,R

f1
g
dz) + (

∫
L2
�,R

f

g
dx+

∫
−L2

�,R

ℎ

g
dx)

=

∫
∣z∣=R

f

g
dz +

∫
−(∣z∣=�)

f

g
dz +

∫ R

�

f

g
dx+

∫ �

R

ℎ

g
dx.

Below is the general method

Theorem. Let P,Q be polynomials with deg(Q) ≥ deg(P ) + 2 and all the zeroes of Q lie in
Re z < 0. Let {z1, z2, ⋅ ⋅ ⋅ , zN} be all the zeroes of Q, then for −1 < � < 1, 0 < arg z < 2�,∫ ∞

0

P (x)

Q(x)
x�dx = − �

sin��
e−�i�

N∑
k=1

Res(
P

Q
(⋅)�; zk).

Proof. For sufficiently large R,

∣
∫
CR

P (z)

Q(z)
z�dz∣ ≤ �R1+�maxz∈CR ∣P (z)∣

minz∈CR ∣Q(z)∣
−→ 0 as R −→∞.

since deg(Q) ≥ deg(P ) + 2. For sufficiently small �,

∣
∫
C�

P (z)

Q(z)
z�dz∣ ≤ ��1+�

maxz∈C� ∣P (z)∣
minz∈C� ∣Q(z)∣

−→ 0 as � −→ 0+.

Therefore, by modifying the proof of the previous proposition, we get∫ ∞
0

P (x)

Q(x)
x�dx+

∫ 0

∞

P (x)

Q(x)
(x�e2�i�)dx = 2�i

N∑
k=1

Res(
P

Q
(⋅)�; zk)

∫ ∞
0

P (x)

Q(x)
x�dx = − �

sin ��
e−�i�

N∑
k=1

Res(
P

Q
(⋅)�; zk).
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Theorem. Let P,Q be polynomials with deg(Q) ≥ deg(P ) + 2 and all the zeroes of Q lie in
Re z < 0. Let {z1, z2, ⋅ ⋅ ⋅ , zN} be all the zeroes of Q, then for 0 < arg z < 2�,∫ ∞

0

P (x)

Q(x)
lnxdx = −1

2
Re

N∑
k=1

Res(
P

Q
(log)2; zk).

Proof. For sufficiently large R,

∣
∫
CR

P (z)

Q(z)
(log z)2dz∣ ≤ �R((lnR)2 + �2)

maxz∈CR ∣P (z)∣
minz∈CR ∣Q(z)∣

−→ 0 as R −→∞.

since deg(Q) ≥ deg(P ) + 2. For sufficiently small �,

∣
∫
C�

P (z)

Q(z)
(log z)2dz∣ ≤ ��((ln �)2 + �2)

maxz∈C� ∣P (z)∣
minz∈C� ∣Q(z)∣

−→ 0 as � −→ 0+.

Therefore, by modifying the proof of the previous proposition, we get∫ ∞
0

P (x)

Q(x)
(lnx)2dx+

∫ 0

∞

P (x)

Q(x)
(lnx+ 2�i)2dx = 2�i

N∑
k=1

Res(
P

Q
(log)2; zk)

−4�i

∫ ∞
0

P (x)

Q(x)
lnxdx+ 4�2

∫ ∞
0

P (x)

Q(x)
dx = 2�i

N∑
k=1

Res(
P

Q
(log)2; zk)

∫ ∞
0

P (x)

Q(x)
lnxdx = −1

2
Re

N∑
k=1

Res(
P

Q
(log)2; zk).

Example 6.8. Find ∫ ∞
0

dx

xp(x+ 1)
,

where 0 < p < 1.
Solution: By the above proposition,∫ R

�

dx

xp(x+ 1)
+

∫ �

R

dx

xpe2�ip(x+ 1)
dx

+

∫
∣z∣=R

z−p

(z + 1)
dz −

∫
∣z∣=�

z−p

(z + 1)
dz

= 2�i(−1)−p

= 2�ie−�ip.

For R > 1,

∣
∫
∣z∣=R

z−p

(z + 1)
dz∣ ≤ 2�R1−p

R− 1
−→ 0 as R −→∞.

For � < 1,

∣
∫
∣z∣=�

z−p

(z + 1)
dz∣ ≤ 2��1−p

(1− �)
−→ 0 as � −→ 0+.

Therefore,

(1− e−2�ip)
∫ ∞
0

dx

xp(x+ 1)
= 2�ie−�ip∫ ∞

0

dx

xp(x+ 1)
= 2�i

1

e�ip − e−�ip∫ ∞
0

dx

xp(x+ 1)
=

�

sin p�
.
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Remark. If the proof the proposition is needed in the examination, you need to prove it to get
the full mark. Of course, you just have to prove this fact for exactly that problem.

6.6 Improper Integral Type V

In this section, we investigate integrals of the form∫ 2�

0

R(cos �, sin �, cos 2�, sin 2�, ⋅ ⋅ ⋅ , cosn�, sinn�)d�

where R is a rational function. We want to reduce this type of integrals into integral type I.
Below is a method

Theorem. Let R be a rational function, then∫ 2�

0

R(cos �, sin �, ⋅ ⋅ ⋅ , cosn�, sinn�)d�

=

∫
∣z∣=1

R(
z + z−1

2
,
z − z−1

2i
, ⋅ ⋅ ⋅ , z

n + z−n

2
,
zn − z−n

2i
)
dz

iz
.

Proof. Let z = ei�, then d� = dz
iz

and cos k� = eik�+e−ik�

2
= zk+z−k

2
and sin k� = eik�−e−ik�

2i
=

zk−z−k
2i

. Hence, ∫ 2�

0

R(cos �, sin �, ⋅ ⋅ ⋅ , cosn�, sinn�)d�

=

∫
∣z∣=1

R(
z + z−1

2
,
z − z−1

2i
, ⋅ ⋅ ⋅ , z

n + z−n

2
,
zn − z−n

2i
)
dz

iz
.

Example 6.9. Find ∫ 2�

0

d�

5 + 4 sin �
.

Solution: Denote C = {z ∈ ℂ : ∣z∣ = 1}.∫ 2�

0

d�

5 + 4 sin �
=

∫
C

1

5 + 4( z−z
−1

2i
)

dz

iz

=

∫
C

dz

2z2 + 5iz − 2

=

∫
C

dz

(z + 2i)(z + i
2
)

= 2�i
1

− i
2i

+ 2i

=
4�

3
.

6.7 Improper Integral Type VI

So far we have only considered the case where the zeroes of Q is either non-real or negative. In
this section, we investigate integrals of the form

P.V.

∫ ∞
−∞

f(x)

Q(x)
dx,

where Q is a polynomial which has a simple real zero and f is a suitable function so that the
integral make sense (e.g. converge). We need a theorem
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Theorem. Let x0 ∈ ℝ and f be analytic on 0 < ∣z − x0∣ < R. If x0 is a simple pole of f , then

lim
�→0+

∫
C�

f(z)dz = �iRes(f ;x0).

Proof. Denote � := Res(f ;x0). Write

f(z) = g(z) +
�

z − x0
and integrate both sides over C�, then∫

C�

f(z)dz =

∫
C�

g(z)dz + ��i.

To estimate
∫
C�
g(z)dz, noting that g is bounded on D(x0,

R
2

), say, ∣g(z)∣ ≤M on D(x0,
R
2

), for

� < R
2

,

∣
∫
C�

g(z)dz∣ ≤M�� −→ 0 as � −→ 0+.

Therefore,

lim
�→0+

∫
C�

f(z)dz = lim
�→0+

(

∫
C�

g(z)dz + �i�) = �i�.

Remark. You can try to compare this theorem with the calculation of
∫∞
0

sinx
x
dx in the suggested

solution of exercise 10 where I used a direct proof to calculate the term lim�→0+
∫
C�

eiz

z
dz there.

Example 6.10. Find ∫ ∞
0

sin2 x

x2
dx.

Solution: Considering e2iz

z2
is no good because 0 is not a simple zero of z2. Instead, we consider∫ ∞

0

sin2 x

x2
dx =

1

2

∫ ∞
0

1− cos 2x

x2
dx,

so that 1−e2iz
z

is analytic at 0 and 0 is a simple zero of z. Let CR, C�, R > � > 0 be the
upper-semi circle with radius R and � respectively. Let L1

�,R be the line segment from −R to
−� and L2

�,R be the line segment from � to R. Finally, let �,R = CR + L1
�,R − C� + L2

�,R. By
Cauchy-Goursat Theorem, for any 0 < � < R,∫

�,R

1− e2iz

z2
dz = 0.

Estimating,

∣
∫
CR

1− e2iz

z2
dz∣ ≤

∫
CR

1 + e−2y

R2
∣dz∣ ≤

∫
CR

2

R2
∣dz∣ = 2�

R
−→ 0 as R −→∞.

By the above theorem,

lim
�→0+

∫
C�

1− e2iz

z2
dz = �iRes(

1− e2iz

z2
; 0) = �i lim

�→0+

1− e2iz

z
= 2�.

Therefore, ∫ ∞
0

sin2 x

x2
dx =

1

2

∫ ∞
0

1− cos 2x

x2
dx =

1

4

∫ ∞
−∞

1− cos 2x

x2
dx =

1

4
2� =

�

2
.

Remark. If the proof the theorem is needed in the examination, you need to prove it to get the
full mark. Of course, you just have to prove this fact for exactly that problem.
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